Genetically modified halos: Towards controlled experiments in galaxy formation

Nina Roth

Local Group Astrostatistics
Ann Arbor, MI
06/03/15
Galaxy simulations
(from a cosmologist’s POV)

Statistical samples

Specific objects

Illustris, Vogelsberger+2014

Eris, Guedes+2011
Seek answers to these questions:

What is the relation between initial conditions and observables?

Which physical processes are responsible?
Experiments?

Environment

Shape

Substructure

Mass

Other: e.g. spin
Experiments?

Ideally: in fully cosmological context

Problem: initial conditions are Gaussian random fields

Other: e.g. spin
Modify existing halo using “constrained realisations”

Draw many times

OR

Follow Hoffman & Ribak 1991: constraints on Gaussian fields

Generate subset of random fields that obey certain criteria
Particle tracking

Halo at $z=0$
(in 50 Mpc/h box)

Same particles at $z=99$
Current constraints

- Total density of halo particles
 - + density in inner region
- Halo mass
- Collapse time
- Potential derivative
- Angular momentum (in progress)
Collapse constraint

![Graph showing overdensity vs. position, with early and late regions, and early and late collapses marked.](image)
All converge to similar total mass at $z=0$

Collapse time should affect inner structure

\rightarrow Density profiles
Density profiles

2.5 Mpc

Reference

Halo concentration

Early coll.

Late coll.

Early

Late
Halo concentration

Average consistent with statistical sample

Individual objects have different slopes!
Teaser: baryons

$M(z=1) \times \{0.5, 2\}$
Summary

• Constrained real. can be used to smoothly modify halos

• In addition: We have a way to measure the probability of the constrained field

• Next steps: baryons and angular momentum (suggestions?)

Roth, Pontzen & Peiris, arXiv:1504.07250
Minimal changes

Reference

Late collapse